Ray-ray Intersection
$$\begin{aligned}
c &= a + t q \\
c &= b + u r
\end{aligned}$$
$$\begin{aligned}
\begin{bmatrix}c_x \\ c_y\end{bmatrix} &= \begin{bmatrix}a_x \\ a_y\end{bmatrix} + t \begin{bmatrix}q_x \\ q_y\end{bmatrix} \\
\begin{bmatrix}c_x \\ c_y\end{bmatrix} &= \begin{bmatrix}b_x \\ b_y\end{bmatrix} + u \begin{bmatrix}r_x \\ r_y\end{bmatrix} \\
\end{aligned}$$
$$\begin{aligned}
c_x &= a_x + t q_x \\
c_y &= a_y + t q_y \\
\end{aligned}$$
$$\begin{aligned}
c_x &= b_x + u r_x \\
c_y &= b_y + u r_y \\
\end{aligned}$$
$$\begin{aligned}
a_x + t q_x &= b_x + u r_x \\
a_y + t q_y &= b_y + u r_y \\
\end{aligned}$$
$$\begin{aligned}
a_x r_y + t q_x r_y &= b_x r_y + u r_x r_y \\
a_y r_x + t q_y r_x &= b_y r_x + u r_x r_y \\
\end{aligned}$$
$$\begin{aligned}
a_x r_y + t q_x r_y - a_y r_x - t q_y r_x &= b_x r_y - b_y r_x \\
\end{aligned}$$
$$\begin{aligned}
t q_x r_y - t q_y r_x &= b_x r_y - a_x r_y - b_y r_x + a_y r_x \\
t (q_x r_y - q_y r_x) &= r_y (b_x - a_x) + -b_y r_x - -a_y r_x \\
t (q_x r_y - q_y r_x) &= r_y (b_x - a_x) - r_x (b_y - a_y) \\
t &= \frac{r_y (b_x - a_x) - r_x (b_y - a_y)}{q_x r_y - q_y r_x} \\
\end{aligned}$$
$$\begin{aligned}
a_x q_y + t q_x q_y &= b_x q_y + u q_y r_x \\
a_y q_x + t q_x q_y &= b_y q_x + u q_x r_y \\
\end{aligned}$$
$$\begin{aligned}
a_x q_y - a_y q_x &= b_x q_y + u q_y r_x - b_y q_x - u q_x r_y \\
\end{aligned}$$
$$\begin{aligned}
u q_x r_y - u q_y r_x &= b_x q_y - a_x q_y - b_y q_x + a_y q_x \\
u (q_x r_y - q_y r_x) &= q_y (b_x - a_x) - b_y q_x - -a_y q_x \\
u (q_x r_y - q_y r_x) &= q_y (b_x - a_x) - q_x (b_y - a_y) \\
u &= \frac{q_y (b_x - a_x) - q_x (b_y - a_y)}{q_x r_y - q_y r_x} \\
\end{aligned}$$
$$\begin{aligned}
d &= b - a \\
\mathit{det} &= q_x r_y - q_y r_x \\
t &= \frac{d_x r_y - d_y r_x}{\mathit{det}} \\
u &= \frac{d_x q_y - d_y q_x}{\mathit{det}} \\
\end{aligned}$$